

UAB "RETAL Lithuania"

Konstitucijos pr. 7, 09308 Vilnius, Lietuva Tel. (+370 528) 58400, Faksas (+370 528) 58411 Imonės kodas 122148547, PVM kodas LT221485410 www.retal.lt

Preform type:	18.5g PCO	20.5g PCO	24g PCO	24g PCO	26.5g PCO	30g PCO	32g PCO
Number of mould:	007A	NB-12	007A	NB-34	NBG-26	NBG-16	NBG-16
Color:	Clear	Clear	Black(25)	Clear/ Brown(51)/ White(96)	Clear	Black(26)	Clear/ Black(26)/ Brown(50)/ Brown(51)/ White(96)
Additive:	-	-	slip	-	-	-	-
Preform type:	33g PCO	33g PCO	33g PCO	36g PCO	39g PCO	39g PCO	40g PCO
Number of mould:	NBG-22	NBG-22	NBG-04	NBG-03/ 022A	NBG-04	022A	039A
Color:	Clear	Red(86)	Black(26)	Clear/ Green(30)	Black(26)	Blue(09)/ Blue(105)	Blue(09)/ Silver(94)
Additive:	-	slip	-	-	-	-	-
Preform type:	41g PCO	43g PCO	47g PCO	47g PCO	48g PCO	52g PCO	22g OIL
Number of mould:	039A	NB-42	038A	038A	NBG-02	NB-15	NB-32
Color:	Blue(09)/ Blue(105)	Clear	Red(86)	White(96)	Silver(91)	Clear	Clear
Additive:	-	slip	slip	-	-	slip	-
Preform type:	21.5g MILK	28g MILK	35g MILK	73g W	85g W	91g W	145g W
Number of mould:	NBG-07	NB-20	NB-20	008A	NB-41	NB-41	NB-29
Color:	Clear/ White(96)	Clear/ White(96)	Clear/ White(96)	Clear	Clear	Clear	Clear/ Blue(105)
Additive:	-	-	-	-	-	-	-

Preform Specification

Date: 14-04-2016

Producer: Retal Lithuania, JSC

Address: Fabriko14B, LT-25121 Lentvaris

1.Product Application

Intended for blowing the PET bottles in the food industry companies. PET bottles may be used to dispense the water, carbonated drinks with CO2 content of 8g/l (if will be used higher than 8 g/l carbonated water, the client should test bottle for suitability carbonization), non-carbonated drinks (lemonades), fruit or vegetable juices (natural or concentrated), as well as alcoholic drinks of 5-20% volume, of room temperature or lower temperature.

Can Can ISO 9001 ISO 14001 ISO 22000 **BUREAU VERITAS** BUREAU VERITAS Certification

AB Swedbank LT 02 7300 0100 0000 4676 73000 HABALT2X

	dditives					
	Name of Resin/Additive		Producer			
PET resin	NEO	PET 80				
	Neopet FR82		JSC Neogroup, Lithuania			
	Neopet FR84					
	Rama	Pet N180	Orion Global PET Klaipeda, Lithuania			
Color	Clear		-			
	Blue(09)/ Blue(105), Alto blue-3					
	Black(25)/ Black(26), Dye Black-3		POLYONE CORPORATION			
	Silver (91), Moon Silver-6		ColorMatrix Europe Ltd.			
		e(96), Linen White-18				
		86), HCA 263-10-12735	HOLLAND COLOURS Europe BV			
		n(30), HCA 131.5115				
	Brow	m(50)/ Brown(51), Clariant FE81075512LF	Clariant Masterbatches S.p.A.			
	Silve	r(94), Clariant NTS30501133-MN	Clariant Masterbatches S.p.A.			
Additive	Slipp	ery, Cesa Slip FEA0075503LF				
3. Coding /Pa	ckaging/	Logistics	I			
Coding		Every preform is marked with letters NB, NBG or RETAL between thread and support ring. The first number is number of mold, next number is number of cavity. Each octabin/metal container is labeled.				
Packaging		Metal containers and octabins are reusable. We resume empty metal containers. Full loaded truck contains 182 empty metal containers.				
Logistics		 impacts the cardboard crash resistance); 4 stacks for metal containers storage up to 6 stacks for metal containers more than limit to stack danger of collapsin inventory management with t temperature not below 5°C (it is a strict recommendation for usage in ambient blowing area temperature - a temperatures for performs. Usage: IMPORTANT to follow up! 	as 52 octabins or metal containers. best hygienic and technical conditions t , able to prevent dirt, moisture and an ered vehicles. n original containers – octabins or meta ore with temperature extremes exclusion , and far from sources of foreign smell. alletized octabins in dry area (humidit rs. If you assume responsibility, you ca . Storage of goods in containers weighin g. the FIFO method; with temperature extremes exclusion) an the blowing area - before usage keep i at least to reach ambient blowing are ed to use preforms in the blowing process It is important to recognize if the use ow or equal +15°C) during the blowing			

ISO 22000 BUREAU VERITAS Certification 122 095 AB Swedbank LT 02 7300 0100 0000 4676 73000 HABALT2X

ata in the Resin			
5	Content		Notes
	NY / 11 11		
	Not applicable		Intentionally do not use
			-
rall migration in the	bottle		
1			
3% Acetic acid	50 % Ethanol	Olive Oil	
(mg/dm^2)	(mg/dm^2)	(mg/dm^2)	
0.0	1.1	0.0	
		0.0	
0.4	0.3		
-	-		
10	10	10	
-	-		
0.5	0.0		
-	- 0.5		
		10.0	
1	MEG+DEG ist 3) mg/kg	<6.2 mg/kg
Л		J IIIg/Kg	<0.2 mg/kg
	7.5 mg/kg		<0.8 mg/kg
			<0.8 mg/kg
			6.6 ppb
FD94	0.04 mg/kg (i.e	oppo)	0.0 ppb
		D /1	
01	MEG+DEG 1st 30 mg/kg		<6.2 mg/kg
	7.5		<0.9 m a/laa
			<0.8 mg/kg
			<0.8 mg/kg
	0.04 mg/kg (i.e. 4	Oppb)	8.6 ppb
Monomer		ımber	SML
Terephthalic acid (PTA)			7.5 mg/kg
Isophthalic acid (IPA)			5.0 mg/kg
Monoethylenglycol (MEG)			MEG+DEG ist 30 mg/kg
Diethylenglycol (DEG)			
Antimony trioxide			0.04 mg/kg
	· ·		
onstituents are listed	without SMLs.		
t in European Commi	ssion regulation 10/2	011(as amended)	with a SML of 0.05 mg/kg
	0		
	$rall migration in the$ Temperature 40°C $\frac{3\% \text{ Acetic acid}}{(\text{mg/dm}^2)}$ 0.0 0.4 $ 0.4$ 10 FR84 $\frac{3\% \text{ Acetic acid}}{(\text{mg/dm}^2)}$ 1.1 1.2 0.5 $ 0.9$ 10.0 <i>cific migration in the</i> $0l$ $FR84$ $3\% \text{ Acetic acid}$ (mg/dm^2) 1.1 1.2 0.5 $ 0.9$ 10.0 <i>cific migration in the</i> $0l$ $ 0.1$ $ 0.1$ $ 0.1$ $ 0.1$ $ 0.1$ $ 0.1$ $ 0.1$ $ 0.1$ $ 0.1$ 0	ContentNot applicablerall migration in the bottleTemperature $40^{\circ}C$ 3% Acetic acid (mg/dm²) 50% Ethanol (mg/dm²)0.01.10.90.80.40.71010FR84 3% Acetic acid (mg/dm²)1.11.01.20.50.50.00.90.510.010.0cific migration in the bottleolMEG+DEG ist 307.5 mg/kg5.0 mg/kg0.40.04 mg/kg (i.e. 4FR84olMEG+DEG ist 307.5 mg/kg5 mg/kg0.04 mg/kg (i.e. 4onomerCAS m(PTA)000100-21-0PA)000121-91-5ol (MEG)000107-21-1DEG)0001309-64-4onstituents are listed without SMLs.d in European Commission regulation 10/2d in European Commission regulation 10/2	S Content Not applicable rall migration in the bottle Temperature 40°C 3% Acetic acid (mg/dm ²) Olive Oil (mg/dm ²) 0.0 1.1 0.0 0.9 0.8 0.0 0.4 0.3 0.0 - - 0.1 0.4 0.7 0.0 10 10 10 FR84 3% Acetic acid (mg/dm ²) 50 % Ethanol (mg/dm ²) (mg/dm ²) 0.5 0.0 1.1 1.0 0.3 1.2 0.5 0.0 0.5 0.0 1.1 - - 0.8 0.9 0.5 0.6 10.0 10.0 10.0 cific migration in the bottle - sl MEG+DEG ist 30 mg/kg 0.1 MEG+DEG ist 30 mg/kg 0.1 MEG+DEG ist 30 mg/kg 0.1 MEG+DEG ist 30 mg/kg 0.1

AB Swedbank LT 02 7300 0100 0000 4676 73000 HABALT2X

Linen White-18						
Additive 1 is listed in Eur	onaan Commissia	n manufaction $10/2011$	(as amondod) w	with a SMI	of 5.00 mg/ltg	
	opean Commissio	ii legulatioli 10/2011	(as amended) v		2 01 5.00 mg/kg.	
Dye Black-3						
All the additives/constitue		out SMLs.				
HolcoPET Red 263-10-1		hich o Crestic Micr	ation Limit (C)	(I) has he	an actoblished	
Contains no Non Coloran	v	mich a Specific Migr	ation Limit (SN	/IL) has be	en established.	
Holcobatch Green 131.5		1. 1 C C M.		(T) 1 1		
Contains no Non Coloran	0	mich a Specific Migr	ation Limit (SN	/IL) has be	en established.	
Cesa slip FEA0075503-I			(T-1	Carta	- 4 - 4 - 1 - D 1 4	
Hazardous Sub	stances	Directive Limits (Tolerated)		Conter	nt in the Product	
Lead Hexavalent chromium		$< 0,1 \% \ < 0,1 \%$			< 0,1 % < 0,1 %	
Mercury		< 0,1 % < 0,1 %		< 0,1 %		
Cadmium		< 0,01 %		< 0,1 % < 0,01 %		
Polybrominated biphenyl	c (DBB)	< 0,01 %			< 0,01 %	
Polybrominated diphenyl	· /	< 0,1 % < 0,1 %			< 0,1 %	
Clariant silver NTS3050	. ,	< 0,1 /	0		< 0,1 /0	
Hazardous Sub		Directive Limits	(Tolerated)	Conter	nt in the Product	
Lead	BUILLUB	< 0.1 %	· · · · · · · · · · · · · · · · · · ·	Conter	< 0,1 %	
Hexavalent chromium		< 0,1 % < 0,1 %		< 0.1 % < 0.1 %		
Mercury		< 0,1 %			< 0,1 %	
Cadmium		< 0,01 9			< 0,01 %	
Polybrominated biphenyl	s (PBB)	< 0,1 %			< 0,1 %	
Polybrominated diphenyl		< 0,1 % < 0,1 %		< 0,1 %		
Clariant Brown FE8107			-		,_ ,.	
Hazardous Sub		Directive Limits (Tolerated)		Conter	Content in the Product	
Lead		< 0,1 %		< 0,1 %		
Hexavalent chromium		< 0,1 %		< 0,1 %		
Mercury		< 0,1 %		< 0,1 %		
Cadmium		< 0,01 %		< 0,01 %		
Polybrominated biphenyl	s (PBB)	< 0,1 %		< 0,1 %		
Polybrominated diphenyl	ethers (PBDE)	< 0,1 %		< 0,1 %		
7. Physical Parameters						
Physical Parameter	Spec	ification	Method		Notes	
Preform weight (g)	18.5 +/- 0.2		Scale			
8 (6)	20.58 +/- 0.3					
	24 +/- 0.3					
	26.29+/- 0.3					
	30 +/- 0.3					
	31.8 +/- 0.3					
	33 +/- 0.3					
	36_36.3 +/- 0.4					
	38.75_39 +/-0.4					
	40 +/- 0.4					
	41 +/- 0.4					
43 +/- 0.4						
	46.7 +/- 0.4					
	48 +/- 0.4					
	51.7 +/- 0.5					
	21.9 +/- 0.3					
	21.5 + - 0.3					
28 +/- 0.3						
	35 +/- 0.4					
	73 +/- 0.73 85 +/- 0.8					

AB Swedbank LT 02 7300 0100 0000 4676 73000 HABALT2X

	01/ 0.0											
	91 +/- 0.9											
	145.1 +/- 1.5											
Preform dimensions	According drawing											
Neck finish	Ø28mm 1 start PC											
	Tip W preform 3 st											
	Bericap 38 3 start;											
	Eurostandart 29/21;											
Preform IV – Deviation	Max -0,02dl/g from PET-Material		ASTM 4603	It is measured in our laboratory								
Acetaldehyde Standard Preform	Not exceed 10 ppm	n	Ground-Method	It is measured in our laboratory.								
Gate nub	Not exceed 3 mm											
Crystallinity in the gate	Not exceed 1/3 of 1	bottom width	visual									
Pin hole in the gate	Critical defect		visual									
Wall thickness variation	Not exceed 0.2 mm		Magnetic field									
v un unexhess vuration	Not exceed 0.2 min		(Equipment MBT -7001)									
Oval thread	Critical defect		Template									
Flash	Not exceed 0.125 m	nm	By touch/microscope									
Inclusions	>0.6mm - max 0.39		Visual, magnifier									
	0.3-0.4 mm – max 5	5%										
Bent preforms	Axial deviation not exceed :1,20mm (preform length <125,5mm)		Magnetic field									
1			(Equipment MBT -7001)									
Air bubbles	none		visual									
Haziness	none		visual									
Unmelts	none		visual									
Short shot	none		visual									
PET preforms shelf life												
PET preforms (clear, colo	ored, with AA	12 month										
scavenger, with UV-filter	, with slipper)	Product older that	n 12 month may be sold only	with client assent								
8. Conformity to EU law												
Conformity for food	Preforms and bottle	es made from it to	o be used in contact with	foodstuff for human								
contact	consumption.											
	The product doesn	The product doesn't contain any hazardous materials such as heavy metals,										
	asbestos, etc.											
	The product herewi	th complies with	the essential requirements	of EU laws:								
10/2011/EEC												
	1935/2004/EEC											
2023/2006/EC 90/128/EEC 282/2008/EC 85/572/EEC												
							82/711/EEC					
							94/62/EC					
							with all amendments.					
	In PET preforms production we do not use any restricted substances listed or											
	Directives 2008/60/	/EC, 95/45/EC an	d 2008/84/EC.									
9. Additional documents												
1) Preform drawing												
2) Safety data sheet of the resin												
3) Safety data sheet4) Safety data sheet												

Renata Šmatavičienė Quality Manager

AB Swedbank LT 02 7300 0100 0000 4676 73000 HABALT2X